I-67

MÖSSBAUER 237 Np AND CRYSTALLOGRAPHIC STUDIES OF 11 NpF $_6$ *3H $_2$ O (11 = Mn, Fe, Co) COMPOUNDS

H. Abazli, A. Cousson, M. Gasperin, J. Fove and M. Pages

Institut Curie, 75231 Paris, Cedex 05 (France)

The compounds M^{II}NpF₆-3H₂O with M^{II} = Mn, Fe, Co were prepared as single crystals by hydrothermal synthesis (T = 400°C, P = 2000 bars). CoNpF₆-3H₂O crystallises in a monoclinic system with C2 space group. Cell parameters are a = 12.143(9)Å; b = 6.922(5)Å; c = 7.942(5)Å; β = 92.84°.

The Mössbauer measurements were performed in a conventional He Cryostat. The Mössbauer source used in the experiments was a 500 mCi $^{241}\mathrm{Am}$ metal with a conventional sine mode drive system.

A microbalance magnetometer attached to a varying temperature Cryostat was used for the susceptibility measurements. The maximum applied magnetic field was 14KG.

The Mossbauer spectroscopy of $^{237}\mathrm{Np}$ shows a magnetically split hyperfine spectrum at 4.2K for all those compounds.

The spectra can be fitted with a magnetic hyperfine field associated to a quadrupole splitting using the linear correlation between $B_{\mbox{eff}}$ and e^2qQ . From isomer shift measurements, we confirm the IV charge state of Np in these 3 compounds.

The magnetic susceptibility shows antiferromagnetic type transition. $1/\chi$ = f(T) follows a Curie-Weiss law above T_M .

I-68

THE PREPARATION OF TECHNETIUM OXYFLUORIDES AND THEIR CHARACTERIZATION BY ⁹⁹Tc, ¹⁷O AND ¹⁹F NMR SPECTROSCOPY

Kenneth J. Franklin, Colin J. L. Lock, B. G. Sayer and Gary J. Schrobilgen*

Department of Chemistry, McMaster University, Hamilton, Ont., L8S 4M1 (Canada)

Relatively little is known about the chemistry of technetium, especially in its highest oxidation state. At the same time, $99\text{Tc}~(1=9/2,~Q=-0.19~x~10^{-24}\text{cm}^2)$ is one of the more sensitive NMR nuclei (sensitivity relative to the proton is 0.275 at 100% abundance). Pertechnetate, TcO_4^- , the standard for $^{99}\text{Tc}~\text{NMR}$ spectroscopy, also displays primary isotopic shifts for $^{17}\text{O}^-$ and $^{18}\text{O}-\text{enriched}$ samples. Technetium-99 NMR has proven an invaluable structural probe in the study of Tc(VII) oxyfluorides.

Noble gas fluorides (KrF₂ and XeF₆) have been used to synthesize novel Tc(VII) species from solutions of TcO₃F in anhydrous HF, i.e. Tc₂O₅F₄ and TcO₂F₃. Pertechnetyl fluoride has also been prepared and its fluoride ion donor properties studied in HF solution. Solid TcO₃+AsF₆- has been isolated from these solutions and characterized. In addition to 99 Tc NMR, compounds have also been studied by 19 F and 17 O (enriched) NMR spectroscopy.